3.45 \(\int \frac {1}{(d+e x^n) (a+c x^{2 n})} \, dx\)

Optimal. Leaf size=152 \[ -\frac {c e x^{n+1} \, _2F_1\left (1,\frac {n+1}{2 n};\frac {1}{2} \left (3+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{a (n+1) \left (a e^2+c d^2\right )}+\frac {c d x \, _2F_1\left (1,\frac {1}{2 n};\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{a \left (a e^2+c d^2\right )}+\frac {e^2 x \, _2F_1\left (1,\frac {1}{n};1+\frac {1}{n};-\frac {e x^n}{d}\right )}{d \left (a e^2+c d^2\right )} \]

[Out]

c*d*x*hypergeom([1, 1/2/n],[1+1/2/n],-c*x^(2*n)/a)/a/(a*e^2+c*d^2)+e^2*x*hypergeom([1, 1/n],[1+1/n],-e*x^n/d)/
d/(a*e^2+c*d^2)-c*e*x^(1+n)*hypergeom([1, 1/2*(1+n)/n],[3/2+1/2/n],-c*x^(2*n)/a)/a/(a*e^2+c*d^2)/(1+n)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 152, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {1425, 245, 1418, 364} \[ -\frac {c e x^{n+1} \, _2F_1\left (1,\frac {n+1}{2 n};\frac {1}{2} \left (3+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{a (n+1) \left (a e^2+c d^2\right )}+\frac {c d x \, _2F_1\left (1,\frac {1}{2 n};\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{a \left (a e^2+c d^2\right )}+\frac {e^2 x \, _2F_1\left (1,\frac {1}{n};1+\frac {1}{n};-\frac {e x^n}{d}\right )}{d \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x^n)*(a + c*x^(2*n))),x]

[Out]

(c*d*x*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)])/(a*(c*d^2 + a*e^2)) + (e^2*x*Hypergeom
etric2F1[1, n^(-1), 1 + n^(-1), -((e*x^n)/d)])/(d*(c*d^2 + a*e^2)) - (c*e*x^(1 + n)*Hypergeometric2F1[1, (1 +
n)/(2*n), (3 + n^(-1))/2, -((c*x^(2*n))/a)])/(a*(c*d^2 + a*e^2)*(1 + n))

Rule 245

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, -((b*x^n)/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 1418

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Dist[d, Int[1/(a + c*x^(2*n)), x], x] + D
ist[e, Int[x^n/(a + c*x^(2*n)), x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] &
& (PosQ[a*c] ||  !IntegerQ[n])

Rule 1425

Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^n)^q/(a
 + c*x^(2*n)), x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] && IntegerQ[q]

Rubi steps

\begin {align*} \int \frac {1}{\left (d+e x^n\right ) \left (a+c x^{2 n}\right )} \, dx &=\int \left (\frac {e^2}{\left (c d^2+a e^2\right ) \left (d+e x^n\right )}-\frac {c \left (-d+e x^n\right )}{\left (c d^2+a e^2\right ) \left (a+c x^{2 n}\right )}\right ) \, dx\\ &=-\frac {c \int \frac {-d+e x^n}{a+c x^{2 n}} \, dx}{c d^2+a e^2}+\frac {e^2 \int \frac {1}{d+e x^n} \, dx}{c d^2+a e^2}\\ &=\frac {e^2 x \, _2F_1\left (1,\frac {1}{n};1+\frac {1}{n};-\frac {e x^n}{d}\right )}{d \left (c d^2+a e^2\right )}+\frac {(c d) \int \frac {1}{a+c x^{2 n}} \, dx}{c d^2+a e^2}-\frac {(c e) \int \frac {x^n}{a+c x^{2 n}} \, dx}{c d^2+a e^2}\\ &=\frac {c d x \, _2F_1\left (1,\frac {1}{2 n};\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{a \left (c d^2+a e^2\right )}+\frac {e^2 x \, _2F_1\left (1,\frac {1}{n};1+\frac {1}{n};-\frac {e x^n}{d}\right )}{d \left (c d^2+a e^2\right )}-\frac {c e x^{1+n} \, _2F_1\left (1,\frac {1+n}{2 n};\frac {1}{2} \left (3+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )}{a \left (c d^2+a e^2\right ) (1+n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 131, normalized size = 0.86 \[ \frac {x \left (c d^2 (n+1) \, _2F_1\left (1,\frac {1}{2 n};\frac {1}{2} \left (2+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )+e \left (a e (n+1) \, _2F_1\left (1,\frac {1}{n};1+\frac {1}{n};-\frac {e x^n}{d}\right )-c d x^n \, _2F_1\left (1,\frac {n+1}{2 n};\frac {1}{2} \left (3+\frac {1}{n}\right );-\frac {c x^{2 n}}{a}\right )\right )\right )}{a d (n+1) \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x^n)*(a + c*x^(2*n))),x]

[Out]

(x*(c*d^2*(1 + n)*Hypergeometric2F1[1, 1/(2*n), (2 + n^(-1))/2, -((c*x^(2*n))/a)] + e*(a*e*(1 + n)*Hypergeomet
ric2F1[1, n^(-1), 1 + n^(-1), -((e*x^n)/d)] - c*d*x^n*Hypergeometric2F1[1, (1 + n)/(2*n), (3 + n^(-1))/2, -((c
*x^(2*n))/a)])))/(a*d*(c*d^2 + a*e^2)*(1 + n))

________________________________________________________________________________________

fricas [F]  time = 1.17, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {1}{a e x^{n} + a d + {\left (c e x^{n} + c d\right )} x^{2 \, n}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d+e*x^n)/(a+c*x^(2*n)),x, algorithm="fricas")

[Out]

integral(1/(a*e*x^n + a*d + (c*e*x^n + c*d)*x^(2*n)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (c x^{2 \, n} + a\right )} {\left (e x^{n} + d\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d+e*x^n)/(a+c*x^(2*n)),x, algorithm="giac")

[Out]

integrate(1/((c*x^(2*n) + a)*(e*x^n + d)), x)

________________________________________________________________________________________

maple [F]  time = 0.10, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (e \,x^{n}+d \right ) \left (c \,x^{2 n}+a \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x^n+d)/(c*x^(2*n)+a),x)

[Out]

int(1/(e*x^n+d)/(c*x^(2*n)+a),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (c x^{2 \, n} + a\right )} {\left (e x^{n} + d\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d+e*x^n)/(a+c*x^(2*n)),x, algorithm="maxima")

[Out]

integrate(1/((c*x^(2*n) + a)*(e*x^n + d)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\left (a+c\,x^{2\,n}\right )\,\left (d+e\,x^n\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + c*x^(2*n))*(d + e*x^n)),x)

[Out]

int(1/((a + c*x^(2*n))*(d + e*x^n)), x)

________________________________________________________________________________________

sympy [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: HeuristicGCDFailed} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d+e*x**n)/(a+c*x**(2*n)),x)

[Out]

Exception raised: HeuristicGCDFailed

________________________________________________________________________________________